Masayuki ARAI Satoshi FUKUMOTO Kazuhiko IWASAKI
In this paper, we present a model for evaluating the effectiveness of (2, 1, m) convolutional-code-based packet-level FEC, under the condition of a limited buffer size in which the number of available packets is restricted for recovery. We analytically derive the post-reconstruction receiving rate, i.e., the probability that a lost packet is received or recovered before the buffer limit is reached. We show numerical examples of the analytical results and demonstrate that the buffer size at the same level as m gives sufficient recovery performance.
Jun TAKAHASHI Hideki TODE Koso MURAKAMI
For the efficient multicast distribution services on the Internet, suppressing the influence of packet loss is important issues. As a solution of this problem, Forward Error Correction (FEC) based on Reed-Solomon codes is usually used. However, in the case of content delivery services for a large amount of data, this approach is not suitable. In this paper, we focus on the erasure codes which are new approach of FEC and propose the efficient multicast video distribution method which combines the multicast distribution using erasure codes and direct request to the server. We implement proposal method and confirm its efficiency from the viewpoints of redundancy and processing time.
In this paper, an efficient architecture for an adaptive Reed-Solomon decoder is presented, where the block length n and the message length k can be varied from their minimum allowable values up to their selected values. This eliminates the need of inserting zeros before decoding shortened RS codes. And the error-correcting capability t can be changed adaptively to channel state at every codeword block. The decoder allows efficient decoding in both burst mode and continuous mode, and it permits 3-step pipelined processing based on the modified Euclid's algorithm. Each step in decoding is designed to be clocked by a separate clock. Thus, each step can be efficiently pipelined with no help of multiplexing. Also, it makes it possible to employ no additional buffer even when the decoder input and output clocks are different. The adaptive RS decoder over GF(28) having the error-correcting capability of upto 10 has been designed in VHDL, and successfully synthesized in an FPGA chip. It can be used in a wide range of applications because of its versatility.
FEC (Forward Error Correction) is widely used to recover packet loss over the Internet since it does not involve additional network delay. However, FEC still needs much additional network bandwidth for redundancy, and does not consider the priority or the importance of video frames to generate redundant data. In this paper, we present Periodic FEC (PFEC) to make up for the shortcomings of FEC. PFEC divides frames into high-priority frames and low-priority frames, and gives redundancy only to high-priority frames. As specific examples, we describe two types of PFEC: Media-Independent PFEC and Media-Dependant PFEC. Moreover, based on the two-state continuous time Markov chain, we propose redundancy control algorithms of the PFEC schemes that can adjust the amount of redundancy to optimal levels depending on network loss conditions. For better performance, we also consider UEP (Unequal Error Protection) based on PFEC that gives redundancy to low-priority frames as well as high-priority frames. Experimental results show that compared with FEC, PFEC reduces the amount of redundancy considerably but degrades PSNR slightly, and UEP based on PFEC economizes redundancy without the degradation of the PSNR.
Tohru KONDO Kouji NISHIMURA Reiji AIBARA
FEC (Forward Error Correction) can repair the damage to communication quality due to packet loss. The growing requirement of FEC for high-quality video transmission is inevitable on broadband networks. We have designed and implemented FEC, and integrated it to our developed video transmission system named "mpeg2ts." Our goal is to make it possible to deploy this system on the broadband Internet. However, the problem with constant redundancy of FEC is that weakness to fluctuation of network condition. To resolve this problem, in this paper, we propose and evaluate an efficient FEC method for high-quality video transmission. The proposed mechanisms can provide robustness as well as saving of processing load and optimization of bandwidth consumption. Moreover, we integrate it into a system to deploy it on the real broadband Internet. Transmission experiment demonstrates availability of developed system deployed on the network.
This paper proposes a hybrid on-demand content delivery scheme employing modified pyramid broadcasting. Our scheme delivers a fixed-sized head portion of the video content to each client individually via an individual channel and the remaining portion via multiple broadcasting channels by using a modified form of pyramid broadcasting. The feature of this scheme is that it can be used together with forward error correction using block coding. Therefore, it can deliver high-quality content upon request with high network bandwidth efficiency even if data containers, such as Ethernet frames, are lost in the IP network. This is not possible with conventional schemes. Evaluation results show that its network bandwidth performance is still excellent even though it supports well-known FEC schemes using block coding.
Zhenqiang SUN Shigetomo KIMURA Yoshihiko EBIHARA
In the wireless asynchronous transfer mode (ATM) networks, a custom data link control (DLC) layer protocol with stronger error correction ability is needed for mitigating the affect of radio channel errors. This paper applies punctured turbo code schemes to the protection of the header and various payloads in wireless ATM cell, which are realized by the combination of programmable interleaving and puncturing. Their performance is analyzed for Rayleigh fading channel, which shows more significant reduction in cell loss rate (CLR) than the previous systems. Our proposal also provides good balance designs for CLR and the payload bit error rate (BER), and offers potential for future evolutionary improvement of the wireless ATM coding scheme.
Doo Seop EOM Masashi SUGANO Masayuki MURATA Hideo MIYAHARA
In the wireless ATM network, the key issue is to guarantee various QoS (Quality of Service) under the conditions of the limited radio link bandwidth and error prone characteristics. In this paper, we show a combination method of the error correction schemes, which is suitable to establish multimedia wireless ATM Networks while keeping an efficient use of the limited bandwidth. We consider two levels of FEC; a bit-level and a cell-level to guarantee cell loss probabilities of real time applications. By combining two levels of FEC, various requirements on cell loss can be met. We then apply the bit-level FEC and ARQ protocol for the data communication; tolerant to the delay characteristics. Through the analytical methods, the required overheads of FECs are examined to satisfy the various QoS requirements of CBR connections. The mean delay analysis for the UBR service class is also presented. In numerical examples, we show how the combination scheme to guarantee various cell loss requirements affects the call blocking probability of the CBR service class and the delay of UBR service class.
Norio OHKAWA Tetsuo TAKAHASHI Yoshiaki MIYAJIMA Mamoru AIKI
Repeaterless transmission system design employing remote pumping in a single fiber is clarified. The design is aimed to realize cost effective submarine transmission systems with easy maintenance. Remote pumping in a single fiber can extend repeaterless transmission distance without decreasing the system capacity per cable. It is applicable for high-count-fiber cable such as the 100-fiber submarine cable already developed. A simple but effective system configuration is presented that uses remote pumping from receiver end; both remote-pre erbium-doped fiber (EDF) amplification and backward pumping Raman amplification are employed. Stable transmission can be obtained without optical isolators, therefore the optical time domain reflectometry (OTDR) method is supported by this system. Three fiber configurations, which consist of dispersion shifted fiber (DSF), pure silica core fiber (PSCF) and a combination of DSF and PSCF, are examined to compare system performance. Remote-pre EDF is optimized in terms of length and location from receiver end by optical SNR (OSNR) calculations. Maximum signal output power is also determined through a waveform simulation based on the split-step Fourier method, in order to avoid waveform distortion caused by the combined effect of self-phase modulation (SPM) and group velocity dispersion (GVD). Through these calculations and simulations, we confirm the proposed repeaterless transmission system performance of 600Mbit/s-451 km with PSCF, 2. 5 Gbit/s-407 km with DSF + PSCF, and 10 Gbit/s-376 km with DSF+PSCF, which include system margin.
Takatoshi SUGIYAMA Masato MIZOGUCHI Shuji KUBOTA
This paper proposes a half-chip offset QPSK (Quadrature Phase Shift Keying) modulation CDMA (Code Division Multiple Access) scheme to allow the simple differential detection while realizing a compact spectrum in nonlinear channels for wireless LAN systems. The experimental results show the proposed scheme achieves excellent Pe (probability of error) performances in ACI (adjacent channel interference) and CCI (co-channel interference) environments. Moreover, by employing time diversity and high-coding-gain FEC (Forward Error Correction), the half-chip offset QPSK-CDMA scheme realizes an improvement of 3.0 dB (in terms of Eb/No at a Pe of 105) in Rician fading environments with a Doppler frequency fD of 10 Hz and a delay spread of 40 nsec.